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Cosmic Acceleration 
from Modified Gravity:

f (R)
A Worked Example



Why Study f (R)?
• Cosmic acceleration, like the cosmological constant, can either be

viewed as arising from

Missing, or dark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravity on large scales

Gµν = 8πG
(
TM
µν + TDE

µν

)
F (gµν) +Gµν = 8πGTM

µν

• Proof of principle models for both exist: quintessence, k-essence;
DGP braneworld acceleration, f(R) modified action

• Compelling models for either explanation lacking

• Study models as illustrative toy models whose features can be
generalized



Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, examples few: f(R) now fully worked  
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Outline
• f(R) Basics and Background

• Linear Theory Predictions

• N-body Simulations and the Chameleon

• Collaborators:

• Marcos Lima

• Hiro Oyaizu

• Hiranya Peiris

• Iggy Sawicki

• Fabian Schmidt

• Yong-Seon Song



f (R) Basics



Cast of f (R) Characters
• R: Ricci scalar or “curvature”

• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

16πG
+ Lm

]



Cast of f (R) Characters
• R: Ricci scalar or “curvature”

• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

16πG
+ Lm

]
• fR ≡ df/dR: additional propagating scalar degree of freedom

(metric variation)

• fRR ≡ d2f/dR2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR

1 + fR

R′ H

H ′

• ′ ≡ d/d ln a: scale factor as time coordinate



ModifiedEinsteinEquation
• In theJordan frame, gravity becomes 4th order but matter remains

minimally coupledand separatelyconserved

Gαβ + fRRαβ −
(

f

2
−�fR

)
gαβ −∇α∇βfR = 8πGTαβ

• Tracecan beinterpreted as ascalar field equationfor fR with a
density-dependent effective potential(p = 0)

3�fR + fRR− 2f = R− 8πGρ



Modified Einstein Equation
• In the Jordan frame, gravity becomes 4th order but matter remains

minimally coupled and separately conserved

Gαβ + fRRαβ −
(

f

2
−�fR

)
gαβ −∇α∇βfR = 8πGTαβ

• Trace can be interpreted as a scalar field equation for fR with a
density-dependent effective potential (p = 0)

3�fR + fRR− 2f = R− 8πGρ

• For small deviations, |fR| � 1 and |f/R| � 1,

�fR ≈
1

3
(R− 8πGρ)

the field is sourced by the deviation from GR relation between
curvature and density and has a mass

m2
fR
≈ 1

3

∂R

∂fR

=
1

3fRR



Effective Potential
• Scalar fR rolls in an effective potential that depends on density
• At high density, extrema is at GR R=8πGρ
• Minimum for B>0, pinning field to |fR| <<1 , maximum for B<0

Sawicki & Hu (2007)
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f (R) Expansion History



Modified Friedmann Equation
• Expansion history parameterization: Friedmann equation becomes

H2 − fR(HH ′ +H2) +
1

6
f +H2fRRR

′ =
8πGρ

3
• Reverse engineering f(R) from the expansion history: for any

desired H , solve a 2nd order diffeq to find f(R)

• Allows a family of f(R) models, parameterized in terms of the
Compton wavelength parameter B



Modified Friedmann Equation
• Expansion history parameterization: Friedmann equation becomes

H2 − fR(HH ′ +H2) +
1

6
f +H2fRRR

′ =
8πGρ

3
• Reverse engineering f(R) from the expansion history: for any

desired H , solve a 2nd order diffeq to find f(R)

• Allows a family of f(R) models, parameterized in terms of the
Compton wavelength parameter B

• Formally includes models where B < 0, such as f(R) = −µ4/R,
leading to confusion as to whether such models provide viable
expansion histories

• Answer: no these have short-time scale tachyonic instabilities at
high curvature and limit as B → 0 from below is not GR

• B > 0 family has very different implications for structure
formation but with identical distance-redshift relations



Hu, Huterer & Smith (2006)

Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 

Song, Hu & Sawicki  (2006)
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Expansion History Family of f(R)
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Hu, Huterer & Smith (2006)

Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 

Song, Hu & Sawicki  (2006)

10

-0.8

-0.6

-0.6

-0.4

-0.2

0

-0.4

-0.2

0

100 1000
R/H0

2

f (
R)

/R
f (

R)
/R

B0=
3

3

1

1

0.3

0.3

0

0

-0.3

-0.3

-1

-1

-3

-3

(a) w=-1, ΩDE=0.76

(b) w=-0.9, ΩDE=0.73



Instability at High Curvature
• Tachyonic instability for negative mass squared B<0 makes high
 curvature regime increasingly unstable: high density ≠ high curvature
• Linear metric perturbations immediately drop the expansion 
 history to low curvature solution 

Sawicki & Hu (2007)

cu
rv

at
ur

e 
R

110-510-10

1

1010

1020

1030

a

 

ΛCDM

Β>0

Β<0



f (R) Linear Theory



Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, examples few: f(R) now fully worked  

 

r* rc

Scalar-Tensor
Regime

Conserved-Curvature
Regime

General Relativistic
Non-Linear Regime

r
halos, galaxy large scale structure CMB



Curvature Conservation
• On superhorizon scales, energy momentum conservation and

expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ ′ = 0 where ′ ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

yields (Hu & Eisenstein 1999)

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ = 0

• Modified gravity theory supplies the closure relationship
Φ = −γ(ln a)Ψ between and expansion history H = ȧ/a supplies
rest.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.

• Small scale density growth enhanced and

8πGρ > R

low curvature regime with order unity deviations from GR

• Transitions in the non-linear regime where the Compton
wavelength can shrink via chameleon mechanism

• Given kNL/aH � 1, even very small fR have scalar-tensor regime



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

f(R) = −M2+2n/Rn



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

• In high redshift, high curvature R limit this is

ε′′ +

(
7

2
+ 4

B′

B

)
ε′ +

2

B
ε =

1

B
× metric sources

B =
fRR

1 + fR

R′ H

H ′

• R→∞, B → 0 and for B < 0 short time-scale tachyonic
instability appears making previous models not cosmologically
viable

f(R) = −M2+2n/Rn



Hu, Huterer & Smith (2006)

Potential Growth
•	 On the stable B>0 branch, potential evolution reverses from decay
	 to growth as wavelength becomes smaller than Compton scale
•	 Quasistatic equilibrium reached in linear theory with γ=−Φ/Ψ=1/2
	 until non-linear effects restore γ=1

Song, Hu & Sawicki  (2006)
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Integrated Sachs-Wolfe Effect
•	 CMB photons transit gravitational potentials of large-scale structure
•	 If potential decays during transit, gravitational blueshift of infall
	 not cancelled by gravitational redshift of exit
•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)



Integrated Sachs-Wolfe Effect
•	 CMB photons transit gravitational potentials of large-scale structure
•	 If potential decays during transit, gravitational blueshift of infall
	 not cancelled by gravitational redshift of exit
•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)



ISW Quadrupole
• Reduction of large angle anisotropy for B0~1 for same expansion 
 history and distances as ΛCDM
• Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•	 Decaying potential: galaxy positions correlated with CMB

•	 Growing potential: galaxy positions anticorrelated with CMB

•	 Observations  indicate correlation 



Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
• Large Compton wavelength B1/2 creates potential growth which can
 anti-correlate galaxies and the CMB
• In tension with detections of positive correlations across a range
 of redshifts

Song, Peiris & Hu (2007)
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Linear Power Spectrum
• Linear real space power spectrum enhanced on scales below
 Compton scale in the background
• Scale-dependent growth rate and potentially large deviations
 on small scales
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f (R) Non-Linear Evolution



Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, examples few: f(R) now fully worked  

 

r* rc

Scalar-Tensor
Regime

Conserved-Curvature
Regime

General Relativistic
Non-Linear Regime

r
halos, galaxy large scale structure CMB



Non-Linear Chameleon
• For f(R) the field equation

∇2fR ≈
1

3
(δR(fR)− 8πGδρ)

is the non-linear equation that returns general relativity

• High curvature implies short Compton wavelength and suppressed
deviations but requires a change in the field from the background
value δR(fR)

• Change in field is generated by density perturbations just like
gravitational potential so that the chameleon appears only if

∆fR ≤
2

3
Φ ,

else required field gradients too large despite δR = 8πGδρ being
the local minimum of effective potential



Non-Linear Dynamics
• Supplement that with the modified Poisson equation

∇2Ψ =
16πG

3
δρ− 1

6
δR(fR)

• Matter evolution given metric unchanged: usual motion of matter
in a gravitational potential Ψ

• Prescription for N -body code

• Particle Mesh (PM) for the Poisson equation

• Field equation is a non-linear Poisson equation: relaxation method
for fR

• Initial conditions set to GR at high redshift



Hu, Huterer & Smith (2006)

Environment Dependent Force
• Chameleon suppresses extra force (scalar field) in high density, 
 deep potential regions
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

Environment Dependent Force
• For large background field, gradients in the scalar prevent the
 chameleon from appearing
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

N-body Power Spectrum
• 5123 PM-relaxation code resolves the chameleon transition to GR:
 greatly reduced non-linear effect
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
• Artificially turning off the chameleon mechanism restores much of
 enhancement
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
• Models where the chameleon absent today (large field models)
 show residual effects from a high redshift chameleon
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Distance Predicts Growth
• With smooth dark energy, distance predicts scale-invariant
 growth to a few percent - a falsifiable prediction

Mortonson, Hu, Huterer (2008)



Hu, Huterer & Smith (2006)

Scaling Relations
• Fitting functions based on normal gravity fail to capture chameleon
 and effect of extra forces on dark matter halos
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
• Models where the chameleon absent today (large field models)
 show residual effects from a high redshift chameleon
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Hu, L, Huterer & Smith (2006)

Mass Function
• Enhanced abundance of rare dark matter halos (clusters) with
 extra force
 

Schmidt, Lima, Oyaizu, Hu (2008)
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Halo Bias
• Halos at a fixed mass less rare and less highly biased

Schmidt, Lima, Oyaizu, Hu (2008)



Halo Mass Correlation
• Enhanced forces vs lower bias

Schmidt, Lima, Oyaizu, Hu (2008)



Hu, Huterer & Smith (2006)

Halo Model
• Power spectrum trends also consistent with halos and modified 
 collapse 
 

Schmidt, Lima, Oyaizu, Hu (2008)
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f (R) Solar System Tests



Solar Profile
•	 Density profile of Sun is not a constant density sphere - interior
	 photosphere, chromosphere, corona
•	 Density drops by ~25 orders of magnitude - does curvature follow?
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Solar System Constraint
• Cassini constraint on PPN |γ-1|<2.3x10-5

• Easily satisfied if galactic field is at potential minimum
 |fRg|<4.9x10-11

• Allows even order unity cosmological fields
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Field Solution
•	 Field solution smoothly relaxes from exterior value
	 to high curvature interior value fR~0, minimizing potential + kinetic
•	 Juncture is where thin-shell criterion is satisfied |∆fR|  ~ ∆Φ

Hu & Sawicki (2007) r/r
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Solar Curvature
•	 Curvature drops suddenly as field moves slightly from zero
•	 Enters into low curvature regime where R<8πGρ 
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Galactic Thin Shell
•	 Galaxy must have a thin shell for interior to remain at high curvature
•	 Rotation curve v/c~10-3, Φ~10-6~|∆fR| limits cosmological field   
•	 Has the low cosmological curvature propagated through local group
	 and galactic exterior?
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Summary
• General lessons from f(R) example – 3 regimes:

• large scales: conservation determined

• intermediate scales: scalar-tensor

• small scales: GR in high density regions, modified in low

• Given fixed expansion history f(R) has additional continuous
parameter: Compton wavelength

• Enhanced gravitational forces below environment-dependent
Compton scale affect growth of structure

• Enhancement hidden by non-linear chameleon mechanism at high
curvature 6= high density)

• N -body (PM-relaxation) simulations show potentially observable
differences in the power spectrum and mass function




